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We evaluate exactly both the nonrelativistic and relativistic fermion determinant in
2+1 dimensions in a constant background field at finite temperature. The effect of finite
chemical potential is also considered. In both cases, the systems are decoupled into an
infinite number of 1+1 fermions by Fourier transformation in theβ-variable. The total
effective actions demonstrate nonextensiveness in theβ-dimension.

1. INTRODUCTION

Thanks to the exotic mathematical structure and the possible relevence to
condensed matter physics in two space dimensions, Chern–Simons (CS) models
have drawn much attention in the past decade (Jackiw, 1985; Randjbar-Daemi
et al., 1990). The CS term can be either put in by hand, or more naturaly, in-
duced by fermion degrees, as a part of the original (effective) lagrangian. Two
properties of the CS action are fundamental. One is that it is odd under parity
transform because of the presence of three-dimensional Levi–Civita symbol. The
other is that it is invariant undersmallgauge transforms while noninvariant under
large gauge transforms (those not to be continuously deformed to unity and
thus carrying nontrivial winding numbers) (Deseret al., 1982a,b). In the free
space–time whose topology is trivial, the homotopy groupπ3 is trivial in the
Abelian case. But there may be nontrivial large gauge transformations if the
gauge fields are subject to nontrivial boundary conditions (for a more recent dis-
cussion see Deseret al., 1997, 1998). In general, if there exists nontrivialπ3,
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the quantum theory is consistent only if the CS parameters are quantized. There
then arises a problem: What happens to the quantized parameters by quantum cor-
rections? In zero temperatures, the induced CS term is well understood (Coleman,
1985; Pisarski, 1985; Redlich, 1984a,b; Rothe, 1993; Witten, 1982). But at finite
temperatures, it was argued (Pisarski, 1987) that the coefficient of the CS term
in the effective action for the gauge field should remain unchanged. Yet, a naive
perturbative calculation that mimics that at zero temperature leads to a CS term
with a parameter continuously dependent on the temperature (Niemi, 1985; Niemi
and Semenoff, 1985; Pisarski, 1987; Redlich and Wijewardhana, 1985). There-
fore, the behavior under gauge transforms seems to be temperature dependent.
The problem of quantum corrections to the CS coefficient induced by fermions at
finite temperature was reexamined in (Bralicet al., 1996 and Cabraet al., 1996),
where it was concluded that, on gauge invariance grounds and in perturbation
theory, the effective action for the gauge field cannot contain a smoothly renor-
malized CS coefficient at nonzero temperatures. Obviously, it is neccessary to
obtain some exact result to reconcile the contradiction. As a toy model, the effec-
tive action of a 0+1 analog of the 2+1 CS system was exactly calculated (Dunne
et al., 1997). It shows that in the analog, the exact finite temperature effective
action, which is nonextensive in temperature, has a well-defined behavior under
a large gauge transformation,independent of the temperature, even though at any
given finite order of a perturbation expansion, there is a temperature dependence.
So it implies that the discussions of the gauge invariance of finite temperature
effective actions and induced CS terms in higher dimensions requires consider-
ation of the full perturbation series. Conversely, no sensible conclusions may be
drawn by considering only the first finite number of terms in the expansion. The
course of being exactly calculable is that the gauge field can be made constant
by gauge transformations. Employing this trick, Foscoet al. calculated exactly
the parity breaking part of the fermion determinant in 2+1 dimensions with a
particular background gauge field for both Abelian and non-Abelian cases (Fosco
et al., 1997a,b), and the result agrees with that from theζ -function method (Deser
et al., 1997, 1998). More general background gauge fields were also considered
(Aitchison and Fasco, 1998). All these works show that (restricted to that particular
ad hoc configuration) gauge invariance of the effective action is respected even
when large gauge transformations are considered. It is now clear that the effective
action induced by the fermion determinant is in general a nonextensive quantity
in space–time/temperature and this feature enables the effective action preserve
gauge invariance.

In the nonrelativistic case, the effective action induced by the 2+1 fermion
determinant was studied in (Randjbar-Daemiet al., 1990) perturbatively in order to
investigate the possible relevance between CS theory and superconductivity, at both
zero and finite temperatures. Since the determinant can not be evaluated exactly for
general background gauge fields, (Neagu and Schakel, 1993) and Andersen and
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Haugset4 considered the case that the gauge field is that of a constant magnetic
field and discussed the induced quantum numbers and de Hass–van Alphen effect.
The difference between the perturbative (loop) calculations and the rigorous results
in this special case is demonstrative.

The effect of finite chemical potential should be taken into account whenever
discussing the statistical physics of a grand canonical ensemble. It was shown that
in 1+1 dimensions, the nonzero chemical potential may contribute a nontrivial
phase factor to the partition function (Alvarez-Estrada and Nicola, 1998). The
problem for an arbitrary background in 2+1 dimensions was tackled perturba-
tively by Sissakian and coworkers.5 As ususal, gauge transform property of the
effective action suffers some temperature dependence. Using the same technique
as in (Foscoet al., 1997a), the effect on the parity-odd part of nonzero chemical
potential is considered in (Feng and Zhu, 1999) but the parity-even part can not be
obtained exactly for the background therein. Therefore, it is worthwhile consid-
ering the problem by exact computation with some particular background. This is
the topic of this paper. The layout of this paper is as follows: In Sections 2 and 3 we
exactly evaluate the nonrelativistic and relativistic fermion determinant at finite
temperature and finite density in a constant magnetic field. Section 4 is devoted to
conclusionary discussions.

2. THE NONRELATIVISTIC CASE

The fermion Lagrangian is (Fenget al., 1997)

L = ψ†i D0ψ − 1

2m
ψ†D/ 2ψ (1)

whereD/ = γ i Di , i = 1, 2· Dµ = ∂µ + ieAµ, γ 0 = σ3, γ 1 = iσ2, γ 2 = iσ1 · e=
−|e|, andσ1,2,3 are the usual three Pauli matrices. We choose representation of
gamma matrices so that it gives the correct sign of the Zeeman energy. It can be
calculated directly that

1

2m
D/ 2 = 1

2m

(
Di D

i + 1

4
[γ i , γ j ]i eFi j

)
= 1

2m
(−D2)− gsµB Bsz (2)

whereµB = e/2m, andgs = 2 is the electrong-factor for spin. We incorporate an
external fieldb to discuss the spin. The Euclidean action at finite temperature and
finite density reads then

LE = ψ†
[

Dτ − 1

2m
D/ 2− bsz+ µ

]
ψ (3)

4 J. O. Andersen and T. Haugset, hep-th/9410084.
5 A. N. Sissakian, O. Yu. Shevchenko, and S. B. Solganik,Topological Effects in Medium, hep-th/
9806047.
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The effective action0 is given by definition

e−0 =
∫

A.B.C.
Dψ†Dψ exp

{
−
∫ β

0
dτ
∫

d2x
[
ψ†Dτψ − 1

2m
ψ†D/ 2ψ

+ µψ†ψ − bψ†szψ

]}
(4)

where theA.B.C. implies that the functional integral over the fermion fields is
implemented with antiperiodic boundary conditions. Once0 is known, the induced
particle number and spin are provided by

〈N〉 =
∫

d2x〈ψ†ψ〉 = − 1

β

∂

∂µ
0b=0 (5)

∫
d2x〈ψ†szψ〉 = − 1

β

∂

∂b
0b=0 (6)

where we have used the fact that the correlation functions in (5) and (6) are actually
β-independent.

Since the exact evaluation of the functional integration in (4) in general is
beyond our ability so far, we first consider those backgrounds of the following
space–time dependence as in (Foscoet al., 1997a).

Aτ = Aτ (τ ), Ai = Ai (x) (7)

Then the gauge field can be rendered constant in “time”τ by gauge transformations.
The time componentAτ will be its average valuẽAτ = β−1

∫ β
0 dτ Aτ (τ ), which can

not be transformed away bylocal transformations. In this gauge, we can employ
the Fourier transformation

ψ(τ, x) = β−1/2
+∞∑
−∞

ψn(x) eiωnτ , ψ†(τ, x) = β−1/2
+∞∑
−∞

ψ†n (x) e−iωnτ (8)

whereωn = (2n+1)π
β

, to decouple the system as a sum of an infinite number of
fermions in 1+1 dimensions.

e−0 =
∏

n

∫
Dψ†n (x)Dψn(x) exp

{
−
∫

d2xψ†n (x)

×
[
(iωn + ieÃτ )− 1

2m
(−D2)− b′sz+ µ

]
ψn(x)

}
(9)

(b′ = b− gsµB B) where we have used the transformation of the functional
measure

Dψ†(τ, x)Dψ(τ, x) =
∏

n

Dψ†n (x)Dψn(x) (10)
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which can be easily proved from the orthonormality of the basis{β−1/2 eiωnτ } in
the Fourier transformation. It can be seen easily that once the eigenvalues of the op-
erator 1

2m(−D2)+ b′sz are known, the functional integration can be accomplished
readily. Unfortunately, this is impossible for general gauge field backgrounds, even
for the restricted class (7). Therefore, we need to make further restrictions. The
simplest case is that the magnetic fieldFi j is constant,F12 = B, and the corre-
sponding gauge potential can be chosen in the gaugeA = (−By, 0). In this case,
the eigenvalues of the operator1

2m(−D2)+ b′sz can be acquired from the solutions
of the equation {

1

2m

[
(Px + eBy)2+ P2

y

]+ b′sz

}
χ = λχ (11)

whereχ is a two-component spinor andPi = −i ∂i . The solutions to (11) are easy
to find and the eigenvalues can be obtained from the well-known Landau levels,
that is

λl ,sz =
(

l + 1

2

)
Ä+ b′sz l = 0, 1, 2,. . . ; sz = ±1

2
; Ä = |eB|

m
(12)

These energy levels are highly degenerate with degeneracy|eB|
2π per unit area, which

must be taken into account when calculating the fermion determinant.

e−0 =
∏

n

Det

[
iωn + ieÃτ − 1

2m
(−D2)− b′ + µ

]
(13)

There is one important point that deserves attention here. In the absence of exter-
nal magnetic field, the Hamiltonian is just that of a free electron and the energy
eigenvalue spectrum is continuous, which can not be regarded simply as the limit
of the discrete spectrum for vanishing external field. Since the numerator is

Det

[
iωn + ieÃτ − 1

2m
(−D2)− b′sz+ µ

]

=
{ ∞∏

l=0

∏
sz=± 1

2

[iωn − El± + µ]

} |eB|
2π

(14)

El± = ieÃτ +
(

l + 1

2

)
Ä± b′

2
(15)

we have

−0 = |eB|
2π

∑
l

∑
n

[ln(iωn − El+ + µ)+ ln(iωn − El− + µ)] (16)
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Using the formula for fermion (Fetter and Walecka, 1971)∑
n

1

iωn − x
= β

eβx + 1
(17)

We have then the expectation values of the spin-up and spin-down electrons per
unit area

N± = |eB|
2π

∑
l

1

eβ(El±−µ) + 1
(18)

〈sz〉 = 1

2
(N+ − N−) (19)

Mz = gsµB〈sz〉 (20)

At zero temperature, these results coincide with those of (Neagu and Schakel,
1993).

3. THE RELATIVISTIC CASE

The Lagrangian of the fermion is

L = ψ̄(i γ µD/µ −m)ψ (21)

There are two inequivalent representations of theγ -matrices in three dimensions:
γ µ = (σ3, iσ2, iσ1) andγ µ = (−σ3,−iσ2,−iσ3). We choose the first. As usual,
the total effective action0(A, m, µ) at finite temperature is defined as

e−0(A,m,µ) =
∫
DψDψ̄ exp

[
−
∫ β

0
dτ
∫

d2x ψ̄(∂/+ ieA/+m− µγ 3)ψ

]
(22)

where we are using Euclidean Dirac matrices in the representationγµ = (σ3, σ2,
σ1), andβ is the inverse temperature. It makes no difference whether the indices
are lower or upper. The label 3 refers actually to the Euclidean time component.
The fermion fields are subject to antiperiodic boundary conditions while the gauge
field are periodic. Under parity transformation,

x1→−x1, x2→ x2, x3→ x3; ψ → γ 1ψ, ψ̄ →−ψ̄γ 1;
(23)

A1→−A1, A2→ A2, A3→ A3

(γ matrices are kept intact). So only the mass term varies under the parity trans-
formation. As in (Foscoet al., 1997a), the parity-odd part is defined as

20(A, m, µ)odd= 0(A, m, µ)− 0(A,−m, µ) (24)
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It is not an easy task to calculate (22) for general configuration of the gauge field.
A particular class of configurations ofA for which (22) can be exactly computed is
that defined by (7). This class of gauge fields shares the same feature as in the 0+ 1
dimensions in (Dunneet al., 1997): the time dependence of the time component
can be erased by gauge transformations. Therefore, the Euclidean action can be
decoupled as a sum of an infinite 1+1 actions

e−0(A,m,µ) =
∫
Dψn(x)Dψ̄n(x) exp

{
− 1

β

+∞∑
−∞

∫
d2x ψ̄n(x)

× [d/+m+ i γ 3(ωn + eÃ3)− µγ 3]ψn(x)

}
(25)

whered/ = γ j (∂ j + i eAj ) is the 1+1 Dirac operator andÃ3 is the mean value
of A3(τ ). It is seen that the chemical potential in 2+1 dimensions plays the role
of a chiral potential in 1+1 dimensions. Let us introduceÄn for convenience,
Än = ωn + eÃ3. Since

m+ i γ 3Än − µγ 3 = ρn ei γ3φn (26)

where

e2iφn = m− µ+ iÄn

m+ µ− iÄn
(27)

and

ρn =
√

(m+ µ− iÄn)(m− µ+ iÄn) (28)

we have therefore

Det(∂/+ ieA/+m− µγ 3) =
+∞∏

n=−∞
Det[d/+ ρnei γ3φn ] (29)

Explicitly, the 1+1 determinant for a given mode is a functional integral over
1+1 fermions

Det[d/+ ρnei γ3φn ] =
∫
DχnDχ̄n exp

{
−
∫

d2x χ̄n(x)(d/+ ρnei γ3φn)χn(x)

}
(30)

After implementing a chiral rotation whose Jacobian is well-known (the Fujikawa
method applies also to complex chiral parameters), we obtain

Det[d/+m+ i γ 3(ωn + eÃ3)− µγ 3] = Jn Det[d/+ ρn] (31)
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where

Jn = exp

(
−i

eφn

2π

∫
d2x ε jk∂ j Ak

)
(32)

Note that the chiral anomalies, or the JacobianJ, depends on the boundary con-
ditions as well. If the system is defined on a torus and the fields are subject to
periodic boundary conditions, for instanceAj (x, y) = Aj (x + Lx, y), Aj (x, y) =
Aj (x, y+ L y), the trace ofγ5 in (Abdallaet al., 1991) is taken over the discrete
complete set instead of the continuous plane waves. Thus the momentum integral∫

d2k
(2π )2 e−k2 = 1

4π should be replaced by 1
Lx L y

∑
n1,n2

exp[−( 2π
Lx

n1)2− ( 2π
L2

n2)2].

Using the formula
∑+∞

n=∞ e−πzn2 = 1√
z

∑+∞
n=−∞ e−

π
z n2

(Burckel, 1979) which holds
for any complexz with Re z >0, we have

1

Lx L y

∑
n1,n2

exp

[
−
(

2π

Lx
n1

)2

−
(

2π

L2
n2

)2]
= θ (Lx)θ (L y) (33)

whereθ (L) = 1√
4π

∑+∞
n=−∞ e−

L2

4 n2
. In this case, (32) should be replaced by

Jn = exp

(
−2ieφnθ (Lx)θ (L y)

∫
Lx×L y

d2x ε jk∂ j Ak

)
(34)

In the following, we only concentrate on the infinite space case since the conclusion
on a torus can be obtained by a trivial substitution. Fortunately, we also have
ρn(m) = ρn(−m) for finite chemical potential. Thus we have immediately

0odd= −
+∞∑

n=−∞
ln Jn = i

e

2π

+∞∑
n=−∞

φn

∫
d2x ε jk∂ j Ak (35)

To calculate
∑+∞

n=−∞ φn, we need to compute
∏+∞

n=−∞
m−µ+iÄn

m+µ−iÄn
. Using the formula∏

n=1,2,3,...[1− 4a2

(2n−1)2 ] = cosπa as in Jackiw (1985), we have (a = eÃ3)

+∞∏
n=−∞

e2iφn =
+∞∏

n=−∞

m− µ+ iÄn

m+ µ− iÄn
= chβ2 (m− µ)+ i shβ2 (m− µ)tgβa

2

chβ2 (m+ µ)− i shβ2 (m+ µ)tgβa
2

(36)

Therefore

0odd= e

4π
ln

[
chβ2 (m− µ)+ i shβ2 (m− µ)tgβa

2

chβ2 (m+ µ)− i shβ2 (m+ µ)tgβa
2

] ∫
d2x ε jk∂ j Ak (37)

which is quite different from the perturbative conclusion in (Neagu and Schakel,
1993) (The formula (97) there is for an arbitrary background).
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Now the low temperature limit can be obtained. It will depend on the rela-
tionship betweenm andµ.

(i) If m > µ, m+ µ > 0

lim
β→∞

0odd= e

4π
β(ia − µ)

∫
d2x ε jk∂ j Ak (38)

(ii) If m− µ > 0, m+ µ < 0,

lim
β→∞

0odd= e

4π
βm

∫
d2x ε jk∂ j Ak (39)

(iii) If m < µ, m+ µ > 0

lim
β→∞

0odd= e

4π
(−βm)

∫
d2x ε jk∂ j Ak (40)

(iv) If m < µ, m+ µ < 0

lim
β→∞

0odd= e

4π
β(µ− ia)

∫
d2x ε jk∂ j Ak (41)

(v) If m= µ

lim
β→∞

0odd= e

4π

(
−βm+ i

βa

2

)
ln cos

βa

2

∫
d2x ε jk∂ j Ak (42)

It vanishes in the high temperature limit. It is obvious that the low temperature is
very sensitive to the values ofm andµ, as agrees with the results perturbatively
obtained (Neagu and Schakel, 1993).

Since in the large-m limit (or in the low-density limit), the parity-odd part
dominates over the effective action, and the particle number in the ensemble is
〈N〉 = 1

β
∂
∂µ

ln Z(β, µ), we have from the limits (38) and (41) that the flux should
be quantized,6

8 = 〈N〉4πh

e
(43)

which implies that each particle carries flux4π h
e and thus should be of fractional

spin S⊗ = 1
4. This is in accordance with the conclusion in (Neagu and Schakel,

1993).
The next thing is to evaluate Det(d/+ ρn). We have to calculate the eigenvalues

of the operatord/+ ρn for this purpose, i.e., to solve the equation

(d/+ ρn)ψ = λψ (44)

6 The Eq (23) in (Feng and Zhu, 1999) should read8 = 〈N〉 4π h
e .
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In general, it is impossible to solve it. So we confine ourselves to the background
(7). It is easily seen that once the eigenvalues ofd/ are known, the eigenvaluesλ
can be obtained. We thus consider the problem

d/ψ = aψ (45)

Since

d/ 2 = Di Di
1

4
[γ j , γi ][ Dj , Di ] = Di Di + eBσ3 (46)

the eigenvaluesa can be obtained from the well-known relativistic Landau levels
(Jonhson and Lippmann, 1949).

a = ±i

√
2

(
l + 1

2

)
|eB| − 2eBs± (47)

with degeneracy|eB|
2π per unit area. Accordingly, we have

λl ,s± = ρn ± i

√
2

(
l + 1

2

)
|eB| − 2eBs± (48)

Therefore, we have (we supposeeB > 0) for a unit area

Det(d/+ ρn) = |eB|
2π

∞∏
l=0

[
ρn + i

√
2

(
l + 1

2

)
|eB| − eB

]

×
[
ρn − i

√
2

(
l + 1

2

)
|eB| + eB

]
(49)

= |eB|
2π

ρn

∞∏
l=0

[
ρn + i

√
2(l + 1)eB

][
ρn − i

√
2(l + 1)eB

]
(50)

= |eB|
2π

ρn

∞∏
l=0

(ρ2+ 2(l + 1)|eB|) (51)

Another way to evaluate it is to make use of the relation

Det(d/+ ρn) = Det[σ3(d/+ ρn)σ3] = Det(−d/+ ρn) (52)

from which one can deduce that

Det(d/+ ρn) =
√

Det
(−d/2+ ρ2

n

)
(53)
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The eigenvalue equation of−d/2+ ρ2
n is(−Di Di − eBσ3+ ρ2

n

)
ψ = νψ (54)

Again from the Landau levels, we know that

ν = 2eB(l + 1/2− sz)+ ρ2
n (55)

Therefore,

Det(d/+ ρn) = |eB|
2π

√√√√ ∞∏
l=0

(
2eBl+ ρ2

n

)[
2eB(l + 1)+ ρ2

n

]
(56)

= |eB|
2π

ρn

∞∏
l=0

[
2(l + 1)eB+ ρ2

n

]
(57)

which agrees with (51).
The total effective action is then

0 = 0odd− |eB|
2π

+∞∑
n=−∞

(
lnρn +

∞∑
l=0

ln
[
ρ2

n + 2(l + 1)eB
])

(58)

which is divergent. With this effective action, one can discuss the induced particle
density and the spin of the system. But the expressions are not as simple as in the
nonrelativistic case.

4. DISCUSSIONS

To conclude this paper, we make some discussions. For the background (7),
the effective action can also be computed as the zero temperature case in (Neagu
and Schakel, 1993). We here first seperate0 into a parity-odd part and a parity-
even part. Both calculations should be in accordance with each other. We know
that in general at zero temperature, the functional determinant can be expanded in
terms of the powers of1m (Deser and Redlich, 1988)

−i ln Det(i D/±m) = ±WCS+ 1

24πm

∫
d3x FµνFµν + O

(
∂2

m2

)
(59)

Unfortunately, we can not make a direct comparison between (58) and (59) because
of the sum

∑
l . Equation (58) can be written as

0 = 0odd− |eB|
2π
· 3

∞∑
n=−∞

ln ρn − |eB|
2π

∞∑
l=0

∞∑
n=−∞

ln

(
1+ 2(l + 1)eB

ρ2
n

)
(60)

So the second term in (59) should correspond to the first term of the expansion of
ln(1+ x) of the third term in (60). In the caseµ = Ã3 = 0, the sum overn can be
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accomplished using the formula

∞∑
n=−∞

1

(2n+ 1)2+ θ2
= 1

θ

(
1

2
− 1

eθ + 1

)
(61)

But the sum overl is troublesome.
Finally, we would like to mention that apart from the interests explained in

the Introduction, there is another interest relevent to bosonization. If the fermion
determinants can be calculated exactly, we may employ the duality-transformation
approach (Burgess and Quevedo, 1994) to bosonize the fermion models as in (Feng
et al., 1998).
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